稀土發(fā)光材料是當前照明、顯示和信息探測器件的核心材料之一,也是未來新一代照明與顯示技術發(fā)展不可或缺的關鍵材料。目前稀土發(fā)光材料研發(fā)和生產(chǎn)主要集中在中國、日本、美國、德國和韓國,我國已成為世界上最大的稀土發(fā)光材料生產(chǎn)國和消費國。在顯示領域,廣色域、大尺寸、高清顯示是未來該領域的重要發(fā)展趨勢,目前廣色域實現(xiàn)方式有多種,液晶顯示、QLED、OLED及激光顯示技術等,其中液晶顯示技術現(xiàn)已形成了非常完備的液晶顯示技術和產(chǎn)業(yè)鏈,具有最大的成本優(yōu)勢,也是國內外顯示企業(yè)開發(fā)的重點。在照明領域內,類似太陽光的全光譜照明作為更為健康的照明方式,已成為業(yè)界關注的焦點。作為未來照明的一個重要發(fā)展方向,激光照明近年來越來越受到人們的關注,并已率先在汽車前大燈照明系統(tǒng)中獲得應用,能夠獲得比氙氣大燈或LED燈高得多的亮度和更低的能耗。光環(huán)境作為植物生長發(fā)育不可缺少的重要物理環(huán)境因素,可通過光質調節(jié)、控制植株形態(tài),促進植物生長,減短植物開花結果用的時間,提高植物產(chǎn)量、產(chǎn)能已成為全球關注重點,亟待開發(fā)適合植物生長照明用高性能發(fā)光材料。在信息探測領域內, 物聯(lián)網(wǎng)以及生物識別(生物認證)技術具有萬億規(guī)模的市場前景,兩者的核心部件均需要應用稀土發(fā)光材料的近紅外傳感器。隨著照明及顯示器件的更新?lián)Q代,作為其核心材料的稀土發(fā)光材料也在發(fā)生著日新月異的變化,針對發(fā)光材料的現(xiàn)狀和發(fā)展趨勢詳述如下。
1高品質顯示技術用發(fā)光材料
1.1 廣色域液晶顯示LED背光源用發(fā)光材料
近年來,平板顯示中液晶顯示(LCD) 發(fā)展勢頭最為強勁,成為平板顯示領域中的主導技術?;诎坠獍l(fā)光二極管(LED)背光源的液晶顯示器以其色彩還原性好、功耗低、長壽命等突出優(yōu)勢,目前在液晶顯示領域的滲透率已超過95%。針對液晶顯示用白光LED的產(chǎn)生方式而言,通過綜合考慮其技術、性能和成本等因素,“藍光LED芯片+熒光粉”方式因技術成熟度高、成本相對較低,仍然是目前白光LED產(chǎn)生的主流方式。對于液晶顯示LED背光而言,利用“藍光LED 芯片+熒光粉”產(chǎn)生的白光 , 經(jīng)過濾光、分光后, 需要產(chǎn)生純正的紅、藍和綠三色光,因而熒光粉是決定LED背光液晶顯示器色域的關鍵因素 。
目前LED背光液晶顯示中普遍使用的熒光粉為Y3Al5O12:CE(YAG:CE)熒光粉體系及SIAlON:EU綠色熒光粉(部分采用硅酸鹽綠粉)和氮化物紅色熒光粉組合體系 。由于前者的光譜波峰比較寬,色純度不佳,其所制作的顯示器色域顯示范圍約70%NTSC,而后一種技術方案顯示色域范圍僅可提高到80%NTSC,但綠粉的色坐標y值和紅粉的色坐標x值均較低,顯示器的色域顯示范圍難以達到85%NTSC以上,且光效較前種技術方案下降40%。廣色域液晶LED顯示技術是指具有90%NTSC以上的顯示色域,通過其可精準呈現(xiàn)影像、豐富色調,實現(xiàn)還原真實世界的絕色視覺效果。目前廣色域LED背光源顯示的關鍵實現(xiàn)方式是“藍光芯片+SIAlON:EU綠粉+氟化物紅粉”體系。然而, 目前國有研稀土開發(fā)的廣色域液晶顯示LED背光源用新型高效氟化物熒光粉的性能與國際水平處于相當水平,特別是開發(fā)了業(yè)內唯一可以批量供貨的鍺系氟化物熒光粉。國產(chǎn) SIAlON:EU綠粉的性能與國外仍有較大差距,國內有研稀土等雖然可以實現(xiàn)高波段SIAlON:EU綠粉的小批量制備,但其主要市場均為國外企業(yè)所壟斷。
目前,基于新型LED背光源的液晶顯示色域產(chǎn)業(yè)化水平已經(jīng)超過90%NTSC,亟待開發(fā)新型的熒光粉及LED背光源,進一步將液晶顯示色域提升至110%NTSC、媲美OLED/QLED 技術,可喜的是,目前比現(xiàn)有氟化物熒光粉波長更長的窄帶發(fā)射紅粉以及比SIAlON:EU綠粉色純度更高的綠粉研制已經(jīng)已初現(xiàn)端倪,并有望在未來2-3年內達到應用水平,必將為高效利用我國已經(jīng)建成了非常完備的液晶顯示技術和產(chǎn)業(yè)鏈,奪取未來廣色域液晶顯示技術的制高點,實現(xiàn)我國在液晶顯示技術的突破與趕超奠定非常好的材料基礎。
1.2 其他新興顯示技術用發(fā)光材料
OLED具有主動發(fā)光、發(fā)光效率高、發(fā)光色純度好、顏色鮮艷、功耗低、器件超輕薄、可柔性等諸多優(yōu)點,利于全色顯示,在顯示領域均具有良好的發(fā)展前景,備受業(yè)界青睞。OLED顯示技術在電視、手機終端、VR、手表等可穿戴設備的應用潛力,以及國產(chǎn)OLED面板的逐漸被市場所認可,也將為OLED 顯示產(chǎn)業(yè)提供爆發(fā)的力量。根據(jù)市場調查,OLED電視機在美國的三千美金高端市場 中,2017年第一季度市場占有率達到65%,55英寸可達到100%,歐洲情況相同。因此OLED顯示技術仍有較好的應用前景。發(fā)光材料(紅、藍、綠 )是OLED顯示器件的重要組成部分,它直接決定著器件性能及用途[8], 達到應用要求的發(fā)光材料必需具有良好的綜合性能,如高的發(fā)光亮度和量子產(chǎn)率;在近紫外或藍光激發(fā)下,具有大的吸收截面和寬的激發(fā)范圍;環(huán)境友好;良好的紫外光耐受性;良好的載流子傳輸性能;良好的熱穩(wěn)定性、成膜性等,目前OLED顯示用發(fā)光材料的綜合性能仍需進一步提升。
量子點材料具有優(yōu)異的發(fā)光性能,具有量子效率高、發(fā)光波長連續(xù)可調、半峰寬窄等特點,用量子點取代傳統(tǒng)的熒光粉,使顯示屏色域提升至110%NTSC。但量子點發(fā)光材料在應用過程中仍有幾個瓶頸問題需要克服。
首先,由于納米晶顆粒尺寸小,比表面積大,在光、熱和化學作用下,納米晶顆粒容易發(fā)生氧化和分解,導致其光學性能急劇下降,在工作溫度下的光衰問題已經(jīng)成為限制了量子點白光LED發(fā)光效率和壽命提升的主要障礙。
其次,雖然量子點與傳統(tǒng)稀土熒光粉相比更易與封裝膠等材料共混,但是由于界面相容性問題,納米晶與封裝介質共混時依然存在團聚和相分離等問題,導致LED產(chǎn)品光效難以進一步提高。利用量子點發(fā)光材料也是制備廣色域顯示器件的備選技術途徑,但由于高成本及組件復雜性的問題,且量子材料含有Cd,對環(huán)境存在負面影響,且因其成本問題,沒有得到實際規(guī)模應用。
量子點發(fā)光材料的穩(wěn)定性是限制其市場化的主要因素,相關研究人員正針對這一問題展開一系列相關研究,隨著材料穩(wěn)定性的提高,可預見三年內量子點白光LED的半衰壽命將達到萬小時以上,市場也會同時建立起來。
量子點顯示領域已呈中、美、韓三強鼎立的局面,競爭激烈。值得慶幸的是,我國在核心材料、原型器件以及制程方面有一定的先發(fā)優(yōu)勢??赏麨槲覈@示產(chǎn)業(yè)突破國外技術路線的專利封鎖,實現(xiàn)“換道超車”提供了良好的契機。
2高品質照明技術用發(fā)光材料
2.1 全光譜照明用發(fā)光材料
隨著白光LED在照明領域的加速滲透,市場對白光LED光源的品質化需求也越來越高,特別是在室內照明方面,對白光LED光源的要求重點,已從最初的單純追求“高亮度”轉換為兼顧顯色指數(shù)、色溫等光色性能的“高品質”,甚至追求類似太陽光的全光譜照明,國內外封裝企業(yè)紛紛加速全光譜LED產(chǎn)品的開發(fā)。目前全光譜LED實現(xiàn)方式主要有多芯片型和單芯片型兩種,其中單芯片型以其實現(xiàn)方式簡單、成本低、光譜更為連續(xù)等優(yōu)點,成為封裝企業(yè)的首選。單芯片實現(xiàn)方式又分為藍光芯片技術(藍光芯片+多顏色發(fā)射熒光粉)和紫外/近紫外芯片(紫外/近紫外芯片+多顏色發(fā)射熒光粉)技術[18-20]。在藍光芯片技術中,器件光譜在藍綠光部分存在嚴重的光譜缺失,理論上難以實現(xiàn)高品質全光譜健康照明需要。目前國家重點發(fā)展的第三代半導體中的紫外、近紫外芯片技術越來越成熟,促使紫外/近紫外芯片技術成為了全光譜照明的首選技術。
藍光激發(fā)的各色熒光粉技術已經(jīng)趨于成熟,但是這些熒光粉大部分不能被紫光高效激發(fā),目前紫外/近紫外芯片激發(fā)用綠色、黃色、紅色熒光粉研究較多,然而普遍存在的問題是發(fā)光效率較低,難以滿足實際應用。開發(fā)適合紫光高效激發(fā)、寬譜帶發(fā)射且各色熒光粉之間低相互吸收的熒光粉成為業(yè)內的研究重點,也是我國在未來照明領域取得知識產(chǎn)權突破的重要發(fā)力點。因此在全光譜照明領域,把握高能、短波第三代半導體技術發(fā)展機遇和趨勢,開發(fā)與之配套的新型發(fā)光材料,特別是適合紫外/近紫外芯片用新型熒光粉,是實現(xiàn)綠色健康照明的重要契機。
2.2 高密度能量激發(fā)用發(fā)光材料
LED照明已經(jīng)成為無可爭議的主流照明技術,預計到2020年,僅半導體照明領域即可形成萬億市場規(guī)模。相比第一、二代半導體材料,第三代半導體具有擊穿電壓高、禁帶寬、熱導率高、電子飽和速率高、抗輻射能力強等優(yōu)點,同時還具有發(fā)光效率高、頻率高等特點,可廣泛應用于半導體照明等多個戰(zhàn)略新興產(chǎn)業(yè),推動和支撐下一代產(chǎn)業(yè)變革。第三代半導體材料應用于固體照明領域,可大幅提升器件的光效和光色品質,但第三代半導體照明光源的重要特征是電流密度增加和芯片發(fā)射光波長向高能量短波方向移動,鑒于發(fā)光材料直接決定了光源的光效和品質,現(xiàn)有經(jīng)典鋁酸鹽等系列熒光粉的激發(fā)特性及穩(wěn)定性已不能滿足第三代半導體高密度能量激發(fā)需要,因此急需突破第三代半導體高密度能量光源高效激發(fā)并形成高品質白光的新型熒光材料及制備技術。
由于LED存在“效率驟降”的現(xiàn)象,即在高電流密度工作時,內量子效率會急劇下降,目前,各國科學家都在尋找新一代的優(yōu)質光源,藍色發(fā)光二極管的發(fā)明者中村修二提出,在不久的將來,LED技術因為受制于其發(fā)光效率的物理極限,最終會被激光二極管取代。與LED照明相比,激光照明可實現(xiàn)更高的效率,半導體激光被認為是繼LED之后的最具發(fā)展前景高端照明和顯示用高品質光源,將成為未來照明及顯示產(chǎn)業(yè)的一個發(fā)展趨勢,目前熒光轉換型激光顯示技術已在激光電視、激光投影、激光影院等大尺寸顯示領域獲得應用。LED照明類似,熒光轉換材料也是激光照明中實現(xiàn)白光輸出的關鍵材料,激光具有更高的能量密度,因此對熒光轉換材料的抗光損傷能力提出了更高的要求。開發(fā)具有高穩(wěn)定性、高轉化效率的新型稀土熒光材料及其應用技術將是未來激光照明的一大挑戰(zhàn),將催生對新型稀土熒光材料及其陶瓷、晶體的產(chǎn)業(yè)化需求。
3特種光源用發(fā)光材料
3.1 植物照明用發(fā)光材料
近年來隨著光電技術的發(fā)展,LED發(fā)光效率得到大幅度提升,LED在植物工廠的應用逐漸受到世界各國的廣泛關注。LED具有體積小、壽命長、低發(fā)熱量等優(yōu)點,此外,其所特有的波長優(yōu)勢、寬幅的可調性等,被認為是人工光植物工廠的有效替代光源。LED應用于植物照明的市場前景相當樂觀,預期市場規(guī)模將快速增長。2017年植物照明(系統(tǒng))市場規(guī)模約為6.9億美金,其中LED燈具為1.93億美金,預估到2020年植物照明(系統(tǒng))市場將成長至14.24億美金,LED燈具將成長至3.56億美金。目前實現(xiàn)LED發(fā)光的模式主要為藍色LED芯片或紫外LED 芯片+熒光粉,未來,植物照明用熒光粉也將是實現(xiàn)植物照明器件的重要原材料之一。
植物進行生長發(fā)育所需要的主要能量來源就是光,但是植物對光的吸收不是全波段的而是有選擇性的,同時不同綠色植物對光的吸收光譜又基本相同,葉綠素對光波最強的吸收區(qū)有兩個,一是在波長為400-500nm的藍、紫光部分,對橙、黃光吸收較少,對綠光的吸收最少,所以葉綠素的溶液呈綠色,另一個是在波長為640-660nm的紅光部分,紅光有利于植物碳水化合物的合成,還能加速植物的生長發(fā)育。所以,高效的植物補光照明一般采用400-500nm的藍光和 640-660nm的超紅光以及部分白光LED的組合來實現(xiàn)。
此外,除了植物必須吸收的上述兩類光,植物還存在光感受系統(tǒng)(光受體)。植物中最主要的光受體就是吸收紅光或遠紅光的光敏色素(phytochrome)。它對紅光和遠紅光極其敏感,參與植物從萌發(fā)到成熟的整個生長發(fā)育過程。植物體內的光敏色素以兩種較穩(wěn)定的狀態(tài)存在:紅光吸收型 (PR,lmax=660nm)和遠紅光吸收型 (PR,lMAX=730nm),這兩種狀態(tài)可相互轉化,所以完整的植物照明方案還應該有730nm的遠紅光。藍粉采用紫外/近紫外芯片激發(fā),主要以鋁酸鹽、硅酸鹽、磷酸鹽、氮化物為基質,EU2+為發(fā)光離子。深紅色熒光粉大都采用EU、MN或CE等離子或與MN2+共摻得到[34-35]。這兩種波段的熒光粉的研究已經(jīng)十分廣泛,目前技術比較成熟,能夠實際應用于植物照明。但是用于植物光敏色素的遠紅光熒光粉的研究還很少,其發(fā)光效率還處于較低的水平,難以實際應用。因此開發(fā)與植物照明領域匹配的遠紅外光新型發(fā)光材料,解決其關鍵制備技術,以及對藍、紅以及遠紅光熒光粉在用于照明時,光的配比的研究是植物照明貢獻于當今生物農業(yè)發(fā)展的重點方向。
3.2 近紅外光源用發(fā)光材料
近紅外光是指波長在780-2526nm范圍內的電磁波,近年來近紅外探測器在面部識別、虹膜識別、安防監(jiān)控、激光雷達、健康檢測、3D傳感等領域的應用得到快速發(fā)展,已然成為國際研究焦點[36-38]。預計2020年近紅外探測器在全球生物識別市場規(guī)模將達到250億美元,其中僅虹膜識別技術總產(chǎn)值將達到35億美元。紅外探測器件是通訊和物聯(lián)系統(tǒng)的重要組成部分,急需高效窄帶或特種寬譜帶發(fā)射的的近紅外(特別是780-1600nm) 器件。目前紅外芯片的專利被國外掌握,尤其是1000nm以上波段芯片的效率低、成本高且受國外專利和技術壟斷,亟待開發(fā)以高能成熟紫光-藍光芯片激發(fā)熒光粉轉換型高效紅外器件。2016年底 , 歐司朗推出首款藍光芯片復合近紅外熒光粉的近紅外LED,用于測量食品中脂肪、蛋白質、水分或糖分含量。藍光芯片與近紅外熒光粉復合封裝的實現(xiàn)方式具有制備工藝簡單、成本低、發(fā)光效率高等優(yōu)點在國際上受到廣泛關注。因此,開發(fā)各波段近紅外LED用新型近紅外熒光粉,實現(xiàn)其多樣化的應用需求迫在眉睫。
根據(jù)近紅外光的分類,近紅外長波為1100-2526nm的發(fā)光,近紅外長波熒光粉主要以Er3+和Ni2+為發(fā)光中心。目前,該領域取得了一系列卓有成效的研究進展 ,研究出了近紅外長波不同波段的熒光粉,且通過敏化離子等的引入實現(xiàn)了能量傳遞,發(fā)光效率得到了很大的提高。
近紅外短波為780~1100nm的發(fā)光,近紅外短波熒光粉主要以Cr3+、Yb3+、Nd3+為發(fā)光中心[41-42]。目前業(yè)界在近紅外發(fā)光材料領域獲得了較為豐富材料體系,但存在的共性問題是發(fā)光效率低,部分體系穩(wěn)定性較差,仍無法滿足市場需求。因此,開發(fā)配套的新型近紅外發(fā)光材料,突破紫光-藍光激發(fā)下高效發(fā)射的紅外熒光粉及其關鍵制備技術,不斷提高其光效,逐漸替代近紅外芯片。
4結論
綜上所述,基于高效低廉的藍光LED芯片的照明與顯示技術已經(jīng)成熟應用,其中適合藍光激發(fā)的照明用鋁酸鹽及氮化物體系熒光粉的性能也日益完善,但是伴隨全光譜照明及大功率照明技術和應用需求,亟待開發(fā)新型熒光粉以及陶瓷化或單晶化的高性能熒光材料。在顯示領域,雖然QLED、OLED和激發(fā)顯示技術發(fā)展迅速,但是開發(fā)新型熒光粉,可望補液晶顯示色域不高的相對之不足,基于藍光LED芯片的液晶顯示背光源技術仍具有極大的生命力。此外,通過材料體系創(chuàng)新,基于藍光LED可望獲得高效近紅外乃至紫外等非可見光光源。在上述領域用熒光粉的材料和技術創(chuàng)新,是實現(xiàn)我國材料乃至光電器件核心專利突破和產(chǎn)業(yè)發(fā)展的重要途徑。
相關閱讀